A Comparison of Neck Movement in the Soft Cervical Collar and Rigid Cervical Brace in Healthy Subjects

Katherine L. Whitcroft, BSc,1 Laura Massouh, BSc,1 Rouin Amirfeyz, FRCS (Trauma & Orth),b and Gordon C. Bannister, MDc

ABSTRACT

Objective: The soft cervical collar has been prescribed for whiplash injury but has been shown to be clinically ineffective. As some authors report superior results for managing whiplash injury with a cervical brace, we were interested in comparing the mechanical effectiveness of the soft collar with a rigid cervical brace. Therefore, the purpose of this study was to measure ranges of motion in subjects without neck pain using a soft cervical collar and a rigid brace compared with no orthosis.

Methods: Fifty healthy subjects (no neck or shoulder pain) aged 22 to 67 years were recruited for this study. Neck movement was measured using a cervical range of motion goniometer. Active flexion, extension, right and left lateral flexion, and right and left rotation were assessed in each subject under 3 conditions: no collar, a soft collar, and a rigid cervical brace.

Results: The soft collar and rigid brace reduced neck movement compared with no brace or collar, but the cervical brace was more effective at reducing motion. The soft collar reduced movement on average by 17.4%; and the cervical brace, by 62.9%. The effect of the orthoses was not affected by age, although older subjects had stiffer necks.

Conclusion: Based on the data of the 50 subjects presented in this study, the soft cervical collar did not adequately immobilize the cervical spine. (J Manipulative Physiol Ther 2011;34:119-122)

Key Indexing Terms: Whiplash Injuries; Spine; Orthotic Devices

Whiplash injury has increased in prevalence since the introduction of seatbelt legislation.1 Some 5% of the population2 are affected, of whom 40% remain symptomatic after 2 years.1 Of the treatments for whiplash injury, evidence from randomized controlled trials supports nonsteroidal anti-inflammatory drugs,3 manipulation,4-12 supervised exercise,13 and self-mobilization.14-18 Although the soft cervical collar is inferior to all other treatments and may produce harm, it is still prescribed regularly.9,16,19

Soft cervical collars fail to restrict movement in 3 of the 6 planes of neck movement20 but seem to be effective in doing so in most acts of daily living. Two older studies suggest that a rigid cervical brace is effective for severe cervical injuries,21,22 but more recent work suggests that cervical collars are no more effective than acting as usual or active mobilization.23 Other studies have shown that using cervical collars produce more harm than help and that active mobilization is superior to the cervical collars in reducing pain and disability for whiplash injury especially in the long term.9,13,14

Because soft cervical collars have been prescribed for whiplash injury but have been proven ineffective and as some authors report superior results for whiplash injury with a cervical brace, we were interested in comparing the mechanical effects of the soft collar with a rigid cervical brace on ranges of motion. Therefore, the purpose of this study was to measure ranges of motion in subjects without neck pain using a soft cervical collar or a rigid brace compared with no orthosis.

MATERIALS AND METHODS

Approval for this study was obtained from the local Research Ethics Committee at the University of Bristol.
Subjects

Fifty subjects were recruited from outpatient clinics of a variety of specialties that they were attending for reasons other than neck, shoulder, or spinal disorder. All subjects gave consent to participate in this study; 20 were male, and 30 were female. Subjects were excluded from this study if they had shoulder or neck pain or pathology but not for neck stiffness. The range of neck movement was measured first without any orthosis and acted as the baseline. Their range of neck movement was then measured wearing first a soft cervical collar and then a cervical brace.

Instrumentation and Training

Neck movement was measured with the “cervical range of motion (CROM) goniometer.” The CROM goniometer is a reliable CROM measurement device and, compared with radiographic, computerized tracking and optoelectronic measurement methods, has “good to excellent” criterion validity.16-22

The CROM goniometer measures CROM in the coronal, sagittal, and transverse planes using separate orthogonally positioned inclinometers. The coronal and sagittal inclinometers, which measure lateral flexion and flexion/extension, respectively, are gravity dependent. The transverse inclinometer works as a compass goniometer and measures axial rotation. Participants were therefore required to wear a magnetic yoke mounted on their shoulders. The CROM goniometer sits on the head like a pair of glasses and is held in place with straps behind over the occipital region.

The orthoses used included a soft cervical collar (Vulkan Medicoll; Mobilis Healthcare Group Ltd, 100 Shaw Rd, Oldham, Lancashire, OL1 4AY) and a cervical brace (Combi Collar; RSL Steeper, Hugh Steeper Ltd, Leeds Manufacturing Centre, Unit 17, Hunsleat Trading Estate, Severn Rd, Leeds LS10 1BL).

Data were collected by the first 2 authors who were trained to use of the orthoses by the resident hospital orthotist and the CROM goniometer by the senior author before undertaking the study.

Validation of Procedure

To validate the study procedure, the effects of “warm-up” and “fatigue” on CROM and the degree of interobserver variation were first assessed.

Warm-Up and Fatigue

The effect of “warm-up” and “fatigue” was established by measuring 20 consecutive neck movements in flexion and extension in 5 participants with the CROM goniometer. Interobserver Error. To assess interobserver error, one subject was asked to perform 10 full cycles of active cervical movements. These included maximal flexion, extension, right and left lateral flexion, and right and left axial rotation. Range of motion was measured using the CROM goniometer, from which the 2 investigators took recordings simultaneously. Therefore, 60 measurements per investigator were obtained from the same subject for comparison.

Method

Each subject sat on a metal-framed chair with a backrest that provided support for the thoracic spine but with no arm supports. Their feet were flat on the floor, and their arms were positioned comfortably by their side. They were asked to sit upright and to maintain this posture throughout the procedure.

Using the CROM goniometer, through one cycle of movement, maximal active cervical flexion, extension, right and left lateral flexion, and right and left axial rotation were measured with no collar (control), a soft collar, and the rigid brace. Data were collected by the first 2 authors, each of whom took measurements from 25 alternate subjects.

Statistical Analysis

Data were analyzed using the SPSS 13.0 (SPSS Inc, Chicago, IL).

The Kolmogorov-Smirnov test was used to establish data normality. Interobserver variance was assessed by calculating intraclass correlation coefficients.

The degree of immobilization provided by each collar was calculated using the general linear model. Bivariate analysis was used to determine whether age affected the proportion of restriction caused by the 2 collars. Finally, the effect of age on CROM was determined by calculating the Pearson correlation coefficient.

RESULTS

Subjects

Ages ranged from 22 to 67 (mean, 43) years. There were 10 subjects in each age range from 20 to 29, 30 to 39, 40 to 49, 50 to 59, and 60 to 69. Data were normally distributed.

Effect of Warm-Up

There was no “warm-up” or “fatigue” effect (P = .494).

Interobserver Agreement

There was a high level of interobserver agreement. Extension showed the strongest agreement; and lateral flexion, the weakest (intraclass correlation coefficients of 0.93 and 0.66, respectively).

Effect of Control, Soft Collar, and Cervical Brace. Compared with no orthoses, the soft collar produced a mean reduction of neck movement of 17.4% (P < .001); and the cervical brace,
The functional tasks described above. These are similar movement in the sagittal plane sufficiently to prevent any of 7.6°, but the soft collar allowed 39.7° and failed to restrict cervical brace for 50 subjects was 37.1% (Table 1).

DISCUSSION

Effect of Age

Older subjects had a stiffer neck in terms of flexion, extension, and lateral flexions ($P = .01-.047$) but not rotation ($P = .127$ and $.143$). Application of the hard collar removed the observed differences caused by age ($P = .148-.942$), whereas the soft collar only limited flexion. Hence, no difference was seen between the age groups with regard to flexion (.162); but there was no effect on the other movements between the age groups.

Although both orthoses reduced neck movement in this study, the amount by which the soft cervical collar immobilized the neck was clinically not substantial because many routine daily tasks require only 30% to 50% of full neck movement. The soft cervical collar allowed a mean of 82.6%, and that with the brace was 37.1% (Table 1).

DISCUSSION

The soft cervical collar is the least effective treatment of whiplash injury. At best, the results of the soft cervical collar equate to no intervention or standard physiotherapy. It is worse than early exercise or mobilization. A recent trial of the cervical brace comparing immobilization of the cervical spine with a rigid collar followed by active mobilization, advice to “act-as-usual,” and an active mobilization program showed that these treatment strategies had similar results.

Although both orthoses reduced neck movement in this study, the amount by which the soft cervical collar immobilized the neck was clinically not substantial because many routine daily tasks require only 30% to 50% of full neck movement. The soft cervical collar allowed a mean of 82.6% of full neck range and therefore did not immobilize the neck sufficiently to prevent the movements associated with routine acts of daily living. By contrast, the rigid cervical brace permitted a mean of 37.1% of full neck range, which would limit such movements as tying shoe laces, reversing a car, and washing hair in the shower.

Flexion-extension is the most frequent movement of the cervical spine. The cervical brace restricted flexion to 7.6°, but the soft collar allowed 39.7° and failed to restrict movement in the sagittal plane sufficiently to prevent any of the functional tasks described above. These are similar findings as to those found by Johnson et al. It follows that the soft cervical collar failed to prevent a substantial proportion of neck movement and therefore appears to have no place in the severely injured neck that requires stabilization. As Muzin et al suggest, there is controversy surrounding collar use to treat whiplash patients, rigid braces may have a role for acute management of traumatic cervical injuries such as fractures, and more studies are needed to best match orthoses with patient conditions.

Limitations

The limitations of this study are that measurements were performed on healthy volunteers and measured the range of neck movement rather than acts of daily living. To measure impact on whiplash, ideally, the subjects would have been patients with whiplash injuries who responded poorly to physical therapy; and the outcome measure would have been pain, neck disability, and restriction in acts of daily living. It would no longer be ethical to randomize patients with untreated whiplash injury to a therapeutic trial that included an arm prescribing the soft cervical collar alone. As well, these 50 subjects may not necessarily be representative of the general public; therefore, caution should be used when extrapolating to other populations. Because clinical outcomes were not measured, no clinical effectiveness can be implied.

REFERENCES

